Properties

Label 15.223e5_15497e5.42t412.1c1
Dimension 15
Group $S_7$
Conductor $ 223^{5} \cdot 15497^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$492904156497605788675646760388151= 223^{5} \cdot 15497^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 4 x^{5} + 4 x^{4} + 2 x^{3} - 2 x^{2} + 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T412
Parity: Odd
Determinant: 1.223_15497.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 22 a + 23 + \left(9 a + 21\right)\cdot 29 + \left(16 a + 8\right)\cdot 29^{2} + \left(20 a + 9\right)\cdot 29^{3} + \left(25 a + 16\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 1 + \left(15 a + 10\right)\cdot 29 + \left(22 a + 13\right)\cdot 29^{2} + \left(7 a + 23\right)\cdot 29^{3} + \left(8 a + 7\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 a + 11 + \left(13 a + 25\right)\cdot 29 + \left(6 a + 23\right)\cdot 29^{2} + \left(21 a + 10\right)\cdot 29^{3} + \left(20 a + 12\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 + 23\cdot 29 + 28\cdot 29^{2} + 15\cdot 29^{3} + 12\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 17 + \left(19 a + 19\right)\cdot 29 + \left(12 a + 22\right)\cdot 29^{2} + \left(8 a + 8\right)\cdot 29^{3} + \left(3 a + 8\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 24 + \left(7 a + 15\right)\cdot 29 + \left(17 a + 13\right)\cdot 29^{2} + \left(26 a + 9\right)\cdot 29^{3} + \left(14 a + 5\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 2 a + 14 + \left(21 a + 28\right)\cdot 29 + \left(11 a + 4\right)\cdot 29^{2} + \left(2 a + 9\right)\cdot 29^{3} + \left(14 a + 24\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$15$
$21$$2$$(1,2)$$5$
$105$$2$$(1,2)(3,4)(5,6)$$-3$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.