Properties

Label 15.193e5_32983e5.42t412.1c1
Dimension 15
Group $S_7$
Conductor $ 193^{5} \cdot 32983^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$10452912594020867724480828003524599= 193^{5} \cdot 32983^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 2 x^{5} + 5 x^{4} - 5 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T412
Parity: Odd
Determinant: 1.193_32983.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 107 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 107 }$: $ x^{2} + 103 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 42 + 70\cdot 107 + 22\cdot 107^{2} + 63\cdot 107^{3} + 12\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 41 + \left(67 a + 84\right)\cdot 107 + \left(25 a + 55\right)\cdot 107^{2} + \left(76 a + 50\right)\cdot 107^{3} + \left(56 a + 97\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 + 60\cdot 107 + 63\cdot 107^{2} + 76\cdot 107^{3} + 74\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 80 a + 42 + \left(39 a + 5\right)\cdot 107 + \left(81 a + 91\right)\cdot 107^{2} + \left(30 a + 8\right)\cdot 107^{3} + \left(50 a + 34\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 76 + 16\cdot 107 + 78\cdot 107^{2} + 54\cdot 107^{3} + 57\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 45 + 22\cdot 107 + 94\cdot 107^{2} + 17\cdot 107^{3} + 62\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 67 + 61\cdot 107 + 22\cdot 107^{2} + 49\cdot 107^{3} + 89\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$15$
$21$$2$$(1,2)$$5$
$105$$2$$(1,2)(3,4)(5,6)$$-3$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.