Properties

Label 15.193327e5.42t412.1
Dimension 15
Group $S_7$
Conductor $ 193327^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$270061427296836406180775407= 193327^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{6} + 2 x^{4} - 2 x^{3} + 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T412
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 83 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 83 }$: $ x^{2} + 82 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 22\cdot 83 + 22\cdot 83^{2} + 70\cdot 83^{3} + 8\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 + 54\cdot 83 + 66\cdot 83^{2} + 19\cdot 83^{3} + 75\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 66 + 10\cdot 83^{2} + 59\cdot 83^{3} + 7\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 16 a + 37 + \left(78 a + 41\right)\cdot 83 + \left(47 a + 58\right)\cdot 83^{2} + \left(70 a + 28\right)\cdot 83^{3} + \left(58 a + 81\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 82 a + 72 + \left(43 a + 73\right)\cdot 83 + \left(14 a + 4\right)\cdot 83^{2} + \left(25 a + 46\right)\cdot 83^{3} + \left(19 a + 47\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 6 }$ $=$ $ a + 71 + \left(39 a + 35\right)\cdot 83 + \left(68 a + 58\right)\cdot 83^{2} + \left(57 a + 56\right)\cdot 83^{3} + \left(63 a + 41\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 67 a + 53 + \left(4 a + 20\right)\cdot 83 + \left(35 a + 28\right)\cdot 83^{2} + \left(12 a + 51\right)\cdot 83^{3} + \left(24 a + 69\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $15$
$21$ $2$ $(1,2)$ $5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.