Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 353 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 353 }$: $ x^{2} + 348 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 306 + 81\cdot 353 + 153\cdot 353^{2} + 289\cdot 353^{3} + 13\cdot 353^{4} +O\left(353^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 124 a + 13 + \left(4 a + 102\right)\cdot 353 + \left(266 a + 141\right)\cdot 353^{2} + \left(139 a + 292\right)\cdot 353^{3} + \left(10 a + 341\right)\cdot 353^{4} +O\left(353^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 318 a + 298 + \left(37 a + 330\right)\cdot 353 + 301\cdot 353^{2} + \left(189 a + 227\right)\cdot 353^{3} + \left(22 a + 271\right)\cdot 353^{4} +O\left(353^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 86 + 238\cdot 353 + 103\cdot 353^{2} + 195\cdot 353^{3} + 26\cdot 353^{4} +O\left(353^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 229 a + 280 + \left(348 a + 352\right)\cdot 353 + \left(86 a + 54\right)\cdot 353^{2} + \left(213 a + 19\right)\cdot 353^{3} + \left(342 a + 254\right)\cdot 353^{4} +O\left(353^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 307 + 103\cdot 353 + 39\cdot 353^{2} + 274\cdot 353^{3} + 308\cdot 353^{4} +O\left(353^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 35 a + 123 + \left(315 a + 202\right)\cdot 353 + \left(352 a + 264\right)\cdot 353^{2} + \left(163 a + 113\right)\cdot 353^{3} + \left(330 a + 195\right)\cdot 353^{4} +O\left(353^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character value |
| $1$ | $1$ | $()$ | $15$ |
| $21$ | $2$ | $(1,2)$ | $-5$ |
| $105$ | $2$ | $(1,2)(3,4)(5,6)$ | $3$ |
| $105$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $70$ | $3$ | $(1,2,3)$ | $3$ |
| $280$ | $3$ | $(1,2,3)(4,5,6)$ | $0$ |
| $210$ | $4$ | $(1,2,3,4)$ | $-1$ |
| $630$ | $4$ | $(1,2,3,4)(5,6)$ | $-1$ |
| $504$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $210$ | $6$ | $(1,2,3)(4,5)(6,7)$ | $-1$ |
| $420$ | $6$ | $(1,2,3)(4,5)$ | $1$ |
| $840$ | $6$ | $(1,2,3,4,5,6)$ | $0$ |
| $720$ | $7$ | $(1,2,3,4,5,6,7)$ | $1$ |
| $504$ | $10$ | $(1,2,3,4,5)(6,7)$ | $0$ |
| $420$ | $12$ | $(1,2,3,4)(5,6,7)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.