Properties

Label 15.163e10_6883e10.42t411.1
Dimension 15
Group $S_7$
Conductor $ 163^{10} \cdot 6883^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$3159757399711623856395147659255179776824620644120975462061201= 163^{10} \cdot 6883^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} - x^{4} + 2 x^{3} - 2 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T411
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 34 a + 14 + \left(37 a + 33\right)\cdot 41 + \left(23 a + 36\right)\cdot 41^{2} + \left(13 a + 13\right)\cdot 41^{3} + \left(26 a + 5\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 + 22\cdot 41 + 31\cdot 41^{2} + 5\cdot 41^{3} + 17\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 34 + \left(3 a + 30\right)\cdot 41 + \left(17 a + 29\right)\cdot 41^{2} + \left(27 a + 30\right)\cdot 41^{3} + \left(14 a + 29\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 + 41 + 38\cdot 41^{2} + 22\cdot 41^{3} + 20\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 31 a + 3 + \left(6 a + 8\right)\cdot 41 + \left(32 a + 5\right)\cdot 41^{2} + \left(2 a + 17\right)\cdot 41^{3} + \left(14 a + 27\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 14 + \left(34 a + 38\right)\cdot 41 + \left(8 a + 12\right)\cdot 41^{2} + \left(38 a + 34\right)\cdot 41^{3} + \left(26 a + 25\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 13 + 29\cdot 41 + 9\cdot 41^{2} + 39\cdot 41^{3} + 37\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $15$
$21$ $2$ $(1,2)$ $-5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $3$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.