Properties

Label 15.13e10_53e10_6871e10.42t411.1
Dimension 15
Group $S_7$
Conductor $ 13^{10} \cdot 53^{10} \cdot 6871^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$5654467399136913451447240695092858482392380172527846687691936346801= 13^{10} \cdot 53^{10} \cdot 6871^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 3 x^{5} + 3 x^{4} - x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T411
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 173 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 173 }$: $ x^{2} + 169 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 48 a + 164 + \left(89 a + 96\right)\cdot 173 + \left(29 a + 76\right)\cdot 173^{2} + \left(86 a + 34\right)\cdot 173^{3} + \left(48 a + 147\right)\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 117 + 36\cdot 173 + 73\cdot 173^{2} + 52\cdot 173^{3} + 163\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 + 130\cdot 173 + 103\cdot 173^{2} + 120\cdot 173^{3} + 131\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 125 a + 10 + \left(83 a + 60\right)\cdot 173 + \left(143 a + 105\right)\cdot 173^{2} + \left(86 a + 3\right)\cdot 173^{3} + \left(124 a + 82\right)\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 20 + 158\cdot 173 + 160\cdot 173^{2} + 76\cdot 173^{3} + 136\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 134 + 134\cdot 173 + 22\cdot 173^{2} + 41\cdot 173^{3} + 97\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 53 + 75\cdot 173 + 149\cdot 173^{2} + 16\cdot 173^{3} + 107\cdot 173^{4} +O\left(173^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $15$
$21$ $2$ $(1,2)$ $-5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $3$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.