Properties

Label 15.13e10_29e10_991e10.42t411.1
Dimension 15
Group $S_7$
Conductor $ 13^{10} \cdot 29^{10} \cdot 991^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$52984647199212674093550957436760215147469979562641427249= 13^{10} \cdot 29^{10} \cdot 991^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{6} + x^{5} - 2 x^{3} + 3 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T411
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 23^{2} + 22\cdot 23^{3} + 22\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 16 + \left(2 a + 4\right)\cdot 23 + \left(18 a + 4\right)\cdot 23^{2} + \left(17 a + 4\right)\cdot 23^{3} + \left(10 a + 20\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 20 a + 22 + \left(20 a + 5\right)\cdot 23 + \left(4 a + 15\right)\cdot 23^{2} + \left(5 a + 21\right)\cdot 23^{3} + 12 a\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 15 + \left(12 a + 13\right)\cdot 23 + \left(a + 4\right)\cdot 23^{2} + \left(10 a + 13\right)\cdot 23^{3} + \left(8 a + 11\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 12 + \left(10 a + 5\right)\cdot 23 + \left(21 a + 18\right)\cdot 23^{2} + \left(12 a + 8\right)\cdot 23^{3} + \left(14 a + 18\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 12 a + \left(21 a + 4\right)\cdot 23 + \left(13 a + 21\right)\cdot 23^{2} + \left(2 a + 3\right)\cdot 23^{3} + \left(7 a + 3\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 11 a + 1 + \left(a + 12\right)\cdot 23 + \left(9 a + 4\right)\cdot 23^{2} + \left(20 a + 18\right)\cdot 23^{3} + \left(15 a + 14\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $15$
$21$ $2$ $(1,2)$ $-5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $3$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.