Properties

Label 15.11e5_41e5_461e5.42t412.1
Dimension 15
Group $S_7$
Conductor $ 11^{5} \cdot 41^{5} \cdot 461^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$388496701972166978186580551= 11^{5} \cdot 41^{5} \cdot 461^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{5} - x^{4} - x^{3} + x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T412
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 157 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 157 }$: $ x^{2} + 152 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 44 a + 152 + \left(119 a + 131\right)\cdot 157 + \left(34 a + 89\right)\cdot 157^{2} + \left(123 a + 101\right)\cdot 157^{3} + \left(112 a + 63\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 53 a + 74 + \left(62 a + 109\right)\cdot 157 + \left(5 a + 122\right)\cdot 157^{2} + \left(80 a + 49\right)\cdot 157^{3} + \left(81 a + 67\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 134 a + 31 + \left(82 a + 25\right)\cdot 157 + \left(152 a + 20\right)\cdot 157^{2} + \left(124 a + 156\right)\cdot 157^{3} + \left(133 a + 125\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 104 a + 25 + \left(94 a + 54\right)\cdot 157 + \left(151 a + 87\right)\cdot 157^{2} + \left(76 a + 130\right)\cdot 157^{3} + \left(75 a + 80\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 58 + 102\cdot 157 + 91\cdot 157^{2} + 134\cdot 157^{3} + 57\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 23 a + 73 + \left(74 a + 148\right)\cdot 157 + \left(4 a + 71\right)\cdot 157^{2} + 32 a\cdot 157^{3} + \left(23 a + 42\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 113 a + 58 + \left(37 a + 56\right)\cdot 157 + \left(122 a + 144\right)\cdot 157^{2} + \left(33 a + 54\right)\cdot 157^{3} + \left(44 a + 33\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $15$
$21$ $2$ $(1,2)$ $5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.