Properties

Label 15.11e10_577e10_11003e10.42t411.1c1
Dimension 15
Group $S_7$
Conductor $ 11^{10} \cdot 577^{10} \cdot 11003^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$2759282158024921618666632360936482451102955205765424285479931351638874634112401= 11^{10} \cdot 577^{10} \cdot 11003^{10} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} - 4 x^{5} + 16 x^{4} - 20 x^{2} + 8 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T411
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 28 + \left(10 a + 30\right)\cdot 31 + \left(17 a + 23\right)\cdot 31^{2} + \left(13 a + 10\right)\cdot 31^{3} + \left(21 a + 27\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 29 + 17\cdot 31^{2} + 31^{3} + 24\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 2 + \left(16 a + 4\right)\cdot 31 + 26\cdot 31^{2} + \left(14 a + 24\right)\cdot 31^{3} + \left(13 a + 24\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 a + 12 + 14 a\cdot 31 + \left(30 a + 11\right)\cdot 31^{2} + \left(16 a + 21\right)\cdot 31^{3} + \left(17 a + 6\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 + 16\cdot 31 + 10\cdot 31^{2} + 22\cdot 31^{3} + 5\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 5 + \left(20 a + 16\right)\cdot 31 + \left(13 a + 17\right)\cdot 31^{2} + \left(17 a + 20\right)\cdot 31^{3} + \left(9 a + 25\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 6 + 24\cdot 31 + 17\cdot 31^{2} + 22\cdot 31^{3} + 9\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$15$
$21$$2$$(1,2)$$-5$
$105$$2$$(1,2)(3,4)(5,6)$$3$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.