Properties

Label 15.113e5_6761e5.42t412.1c1
Dimension 15
Group $S_7$
Conductor $ 113^{5} \cdot 6761^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$260283655280619872491891803193= 113^{5} \cdot 6761^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} + x^{4} - 2 x^{3} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T412
Parity: Even
Determinant: 1.113_6761.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 277 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 277 }$: $ x^{2} + 274 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 55 + 149\cdot 277 + 132\cdot 277^{2} + 244\cdot 277^{3} + 22\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 187 + 136\cdot 277 + 30\cdot 277^{2} + 274\cdot 277^{3} + 2\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 153 a + 49 + \left(9 a + 11\right)\cdot 277 + \left(254 a + 207\right)\cdot 277^{2} + \left(104 a + 234\right)\cdot 277^{3} + \left(223 a + 234\right)\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 150 a + 27 + \left(207 a + 159\right)\cdot 277 + \left(182 a + 222\right)\cdot 277^{2} + \left(90 a + 101\right)\cdot 277^{3} + \left(221 a + 247\right)\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 127 a + 200 + \left(69 a + 77\right)\cdot 277 + \left(94 a + 9\right)\cdot 277^{2} + \left(186 a + 191\right)\cdot 277^{3} + \left(55 a + 266\right)\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 124 a + 231 + \left(267 a + 163\right)\cdot 277 + \left(22 a + 128\right)\cdot 277^{2} + \left(172 a + 18\right)\cdot 277^{3} + \left(53 a + 246\right)\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 83 + 133\cdot 277 + 100\cdot 277^{2} + 43\cdot 277^{3} + 87\cdot 277^{4} +O\left(277^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$15$
$21$$2$$(1,2)$$5$
$105$$2$$(1,2)(3,4)(5,6)$$-3$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.