Properties

Label 15.109e8_6653e10.42t411.1c1
Dimension 15
Group $S_7$
Conductor $ 109^{8} \cdot 6653^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$3385222493915418511726482387746034476252535480409405129= 109^{8} \cdot 6653^{10} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 5 x^{5} + 8 x^{4} + 7 x^{3} - 7 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T411
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 38 a + 14 + \left(38 a + 36\right)\cdot 41 + \left(36 a + 30\right)\cdot 41^{2} + \left(31 a + 24\right)\cdot 41^{3} + \left(18 a + 26\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 19 + \left(12 a + 17\right)\cdot 41 + \left(16 a + 28\right)\cdot 41^{2} + \left(5 a + 7\right)\cdot 41^{3} + \left(13 a + 10\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 19 a + 10 + \left(29 a + 30\right)\cdot 41 + \left(27 a + 22\right)\cdot 41^{2} + \left(38 a + 33\right)\cdot 41^{3} + \left(34 a + 4\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 a + 26 + \left(11 a + 17\right)\cdot 41 + \left(13 a + 35\right)\cdot 41^{2} + \left(2 a + 39\right)\cdot 41^{3} + \left(6 a + 29\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 + 25\cdot 41 + 41^{2} + 8\cdot 41^{3} + 38\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 32 a + 5 + \left(28 a + 4\right)\cdot 41 + \left(24 a + 24\right)\cdot 41^{2} + \left(35 a + 7\right)\cdot 41^{3} + \left(27 a + 3\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 3 a + 5 + \left(2 a + 33\right)\cdot 41 + \left(4 a + 20\right)\cdot 41^{2} + \left(9 a + 1\right)\cdot 41^{3} + \left(22 a + 10\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$15$
$21$$2$$(1,2)$$-5$
$105$$2$$(1,2)(3,4)(5,6)$$3$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.