Properties

Label 15.109e5_293e5_2137e5.42t412.1c1
Dimension 15
Group $S_7$
Conductor $ 109^{5} \cdot 293^{5} \cdot 2137^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$1480789077336463432178331732671734457849= 109^{5} \cdot 293^{5} \cdot 2137^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 7 x^{5} + 2 x^{4} + 12 x^{3} + x^{2} - 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T412
Parity: Even
Determinant: 1.109_293_2137.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 50 a + 21 + \left(15 a + 24\right)\cdot 67 + \left(37 a + 6\right)\cdot 67^{2} + \left(40 a + 17\right)\cdot 67^{3} + \left(40 a + 65\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 45 a + 42 + \left(63 a + 53\right)\cdot 67 + \left(31 a + 23\right)\cdot 67^{2} + \left(30 a + 4\right)\cdot 67^{3} + \left(47 a + 13\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 37 + 59\cdot 67 + 10\cdot 67^{2} + 62\cdot 67^{3} + 31\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 55 + \left(32 a + 2\right)\cdot 67 + \left(51 a + 47\right)\cdot 67^{2} + \left(30 a + 38\right)\cdot 67^{3} + \left(8 a + 31\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 29 a + 6 + \left(34 a + 28\right)\cdot 67 + \left(15 a + 19\right)\cdot 67^{2} + \left(36 a + 43\right)\cdot 67^{3} + \left(58 a + 34\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 22 a + 21 + \left(3 a + 62\right)\cdot 67 + \left(35 a + 20\right)\cdot 67^{2} + \left(36 a + 27\right)\cdot 67^{3} + \left(19 a + 38\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 17 a + 20 + \left(51 a + 37\right)\cdot 67 + \left(29 a + 5\right)\cdot 67^{2} + \left(26 a + 8\right)\cdot 67^{3} + \left(26 a + 53\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$15$
$21$$2$$(1,2)$$5$
$105$$2$$(1,2)(3,4)(5,6)$$-3$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.