Properties

Label 15.109e10_6389e10.42t411.1c1
Dimension 15
Group $S_7$
Conductor $ 109^{10} \cdot 6389^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$26828343653234231952951588152802844637789608782561070164001= 109^{10} \cdot 6389^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{6} + 2 x^{4} - 4 x^{3} + 4 x^{2} - 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T411
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + \left(13 a + 54\right)\cdot 71 + \left(44 a + 46\right)\cdot 71^{2} + \left(42 a + 13\right)\cdot 71^{3} + \left(16 a + 40\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 64 a + 14 + \left(57 a + 2\right)\cdot 71 + \left(26 a + 51\right)\cdot 71^{2} + \left(28 a + 54\right)\cdot 71^{3} + \left(54 a + 30\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 32 a + 38 + \left(49 a + 29\right)\cdot 71 + \left(52 a + 3\right)\cdot 71^{2} + \left(52 a + 25\right)\cdot 71^{3} + \left(56 a + 47\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 33 a + 63 + \left(45 a + 41\right)\cdot 71 + \left(59 a + 50\right)\cdot 71^{2} + \left(30 a + 62\right)\cdot 71^{3} + \left(38 a + 1\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 + 31\cdot 71 + 19\cdot 71^{2} + 56\cdot 71^{3} + 7\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 38 a + 58 + \left(25 a + 28\right)\cdot 71 + \left(11 a + 53\right)\cdot 71^{2} + \left(40 a + 64\right)\cdot 71^{3} + \left(32 a + 47\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 39 a + 31 + \left(21 a + 25\right)\cdot 71 + \left(18 a + 59\right)\cdot 71^{2} + \left(18 a + 6\right)\cdot 71^{3} + \left(14 a + 37\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$15$
$21$$2$$(1,2)$$-5$
$105$$2$$(1,2)(3,4)(5,6)$$3$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.