Properties

Label 15.1097e5_5119e5.42t412.1
Dimension 15
Group $S_7$
Conductor $ 1097^{5} \cdot 5119^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$5584171986500855070280995349585943= 1097^{5} \cdot 5119^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 3 x^{5} + 5 x^{4} + 2 x^{3} - 6 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T412
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$: $ x^{2} + 82 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 59 a + 49 + \left(61 a + 63\right)\cdot 89 + \left(50 a + 86\right)\cdot 89^{2} + \left(65 a + 34\right)\cdot 89^{3} + \left(77 a + 26\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 73 + 16\cdot 89 + 45\cdot 89^{2} + 29\cdot 89^{3} + 76\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 30 a + 17 + \left(27 a + 80\right)\cdot 89 + \left(38 a + 23\right)\cdot 89^{2} + \left(23 a + 87\right)\cdot 89^{3} + \left(11 a + 59\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 78 + 35\cdot 89 + 80\cdot 89^{2} + 81\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 31 a + 79 + \left(5 a + 85\right)\cdot 89 + \left(54 a + 31\right)\cdot 89^{2} + \left(61 a + 82\right)\cdot 89^{3} + \left(51 a + 31\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 58 a + 29 + \left(83 a + 3\right)\cdot 89 + \left(34 a + 49\right)\cdot 89^{2} + \left(27 a + 14\right)\cdot 89^{3} + \left(37 a + 65\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 32 + 70\cdot 89 + 38\cdot 89^{2} + 17\cdot 89^{3} + 15\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $15$
$21$ $2$ $(1,2)$ $5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.