Properties

Label 15.1084313e10.42t411.1
Dimension 15
Group $S_7$
Conductor $ 1084313^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$2246708075369941069693592759527445192925063965209575407980849= 1084313^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{6} + 2 x^{4} - 2 x^{3} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T411
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 19 + \left(41 a + 42\right)\cdot 53 + \left(12 a + 33\right)\cdot 53^{2} + \left(22 a + 8\right)\cdot 53^{3} + \left(50 a + 21\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 + 18\cdot 53 + 38\cdot 53^{2} + 9\cdot 53^{3} + 46\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 40 + \left(36 a + 30\right)\cdot 53 + \left(40 a + 30\right)\cdot 53^{2} + \left(43 a + 48\right)\cdot 53^{3} + \left(7 a + 25\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 43 a + 14 + \left(38 a + 40\right)\cdot 53 + \left(36 a + 32\right)\cdot 53^{2} + \left(43 a + 28\right)\cdot 53^{3} + \left(36 a + 6\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 27 + \left(14 a + 46\right)\cdot 53 + \left(16 a + 34\right)\cdot 53^{2} + \left(9 a + 7\right)\cdot 53^{3} + \left(16 a + 4\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 30 a + 26 + \left(16 a + 47\right)\cdot 53 + \left(12 a + 50\right)\cdot 53^{2} + \left(9 a + 23\right)\cdot 53^{3} + \left(45 a + 13\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 44 a + 2 + \left(11 a + 39\right)\cdot 53 + \left(40 a + 43\right)\cdot 53^{2} + \left(30 a + 31\right)\cdot 53^{3} + \left(2 a + 41\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $15$
$21$ $2$ $(1,2)$ $-5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $3$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.