Properties

Label 15.107e5_21557e5.42t412.1
Dimension 15
Group $S_7$
Conductor $ 107^{5} \cdot 21557^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$65292078942224383797702935932999= 107^{5} \cdot 21557^{5} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{5} - x^{4} + x^{3} + 3 x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T412
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 48 a + 16 + \left(4 a + 4\right)\cdot 53 + \left(46 a + 6\right)\cdot 53^{2} + \left(38 a + 39\right)\cdot 53^{3} + \left(24 a + 7\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 41 a + 14 + \left(51 a + 30\right)\cdot 53 + \left(17 a + 47\right)\cdot 53^{2} + \left(31 a + 31\right)\cdot 53^{3} + \left(4 a + 7\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 33 a + 13 + \left(41 a + 24\right)\cdot 53 + \left(38 a + 5\right)\cdot 53^{2} + \left(50 a + 33\right)\cdot 53^{3} + \left(14 a + 8\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 49 + \left(48 a + 28\right)\cdot 53 + \left(6 a + 26\right)\cdot 53^{2} + \left(14 a + 42\right)\cdot 53^{3} + \left(28 a + 14\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 20 a + 39 + \left(11 a + 51\right)\cdot 53 + \left(14 a + 12\right)\cdot 53^{2} + \left(2 a + 38\right)\cdot 53^{3} + \left(38 a + 17\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 9 + 35\cdot 53 + 45\cdot 53^{2} + 46\cdot 53^{3} + 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 12 a + 19 + \left(a + 37\right)\cdot 53 + \left(35 a + 14\right)\cdot 53^{2} + \left(21 a + 33\right)\cdot 53^{3} + \left(48 a + 47\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $15$
$21$ $2$ $(1,2)$ $5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.