Properties

Label 15.1048193e5.42t412.1c1
Dimension 15
Group $S_7$
Conductor $ 1048193^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$15$
Group:$S_7$
Conductor:$1265337197875079705378190424193= 1048193^{5} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} + 3 x^{5} - 2 x^{4} + 2 x^{3} - x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T412
Parity: Even
Determinant: 1.1048193.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 139 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 139 }$: $ x^{2} + 138 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 11 a + 58 + \left(16 a + 115\right)\cdot 139 + \left(130 a + 109\right)\cdot 139^{2} + \left(115 a + 14\right)\cdot 139^{3} + \left(18 a + 125\right)\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 + 86\cdot 139 + 65\cdot 139^{2} + 86\cdot 139^{3} + 118\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 116 a + 122 + \left(123 a + 103\right)\cdot 139 + \left(62 a + 55\right)\cdot 139^{2} + \left(14 a + 86\right)\cdot 139^{3} + \left(35 a + 36\right)\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 23 a + 99 + \left(15 a + 111\right)\cdot 139 + \left(76 a + 133\right)\cdot 139^{2} + \left(124 a + 37\right)\cdot 139^{3} + \left(103 a + 57\right)\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 128 a + 69 + \left(122 a + 120\right)\cdot 139 + \left(8 a + 84\right)\cdot 139^{2} + 23 a\cdot 139^{3} + \left(120 a + 28\right)\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 63 a + 58 + \left(62 a + 9\right)\cdot 139 + \left(92 a + 38\right)\cdot 139^{2} + \left(121 a + 11\right)\cdot 139^{3} + \left(9 a + 12\right)\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 76 a + 121 + \left(76 a + 8\right)\cdot 139 + \left(46 a + 68\right)\cdot 139^{2} + \left(17 a + 40\right)\cdot 139^{3} + \left(129 a + 39\right)\cdot 139^{4} +O\left(139^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$15$
$21$$2$$(1,2)$$5$
$105$$2$$(1,2)(3,4)(5,6)$$-3$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.