Properties

Label 14.983441e10.42t413.1c1
Dimension 14
Group $S_7$
Conductor $ 983441^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$846219642940806605123096034084979146448553732997704626826401= 983441^{10} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{5} - x^{4} - x^{3} + x^{2} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T413
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 127 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 127 }$: $ x^{2} + 126 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 109 a + 73 + \left(39 a + 123\right)\cdot 127 + \left(120 a + 51\right)\cdot 127^{2} + \left(2 a + 104\right)\cdot 127^{3} + \left(16 a + 82\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 86 a + 9 + \left(75 a + 50\right)\cdot 127 + \left(118 a + 71\right)\cdot 127^{2} + \left(36 a + 16\right)\cdot 127^{3} + \left(35 a + 34\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 41 a + 95 + \left(51 a + 39\right)\cdot 127 + \left(8 a + 114\right)\cdot 127^{2} + \left(90 a + 61\right)\cdot 127^{3} + \left(91 a + 32\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 44 a + 65 + \left(11 a + 9\right)\cdot 127 + \left(14 a + 88\right)\cdot 127^{2} + \left(35 a + 8\right)\cdot 127^{3} + \left(79 a + 117\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 83 a + 109 + \left(115 a + 103\right)\cdot 127 + \left(112 a + 90\right)\cdot 127^{2} + \left(91 a + 29\right)\cdot 127^{3} + \left(47 a + 34\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 18 a + 55 + \left(87 a + 54\right)\cdot 127 + \left(6 a + 5\right)\cdot 127^{2} + \left(124 a + 114\right)\cdot 127^{3} + \left(110 a + 95\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 102 + 126\cdot 127 + 85\cdot 127^{2} + 45\cdot 127^{3} + 111\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$-6$
$105$$2$$(1,2)(3,4)(5,6)$$-2$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$2$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$0$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$2$
$420$$6$$(1,2,3)(4,5)$$0$
$840$$6$$(1,2,3,4,5,6)$$1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.