Properties

Label 14.983...439.30t565.a.a
Dimension $14$
Group $S_7$
Conductor $9.832\times 10^{60}$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $14$
Group: $S_7$
Conductor: \(983\!\cdots\!439\)\(\medspace = 89^{9} \cdot 67231^{9} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 7.5.5983559.1
Galois orbit size: $1$
Smallest permutation container: 30T565
Parity: odd
Determinant: 1.5983559.2t1.a.a
Projective image: $S_7$
Projective stem field: Galois closure of 7.5.5983559.1

Defining polynomial

$f(x)$$=$ \( x^{7} - x^{5} - x^{4} - 3x^{3} + 2x^{2} + 2x - 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 149 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 149 }$: \( x^{2} + 145x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 9 a + 105 + \left(97 a + 6\right)\cdot 149 + \left(147 a + 94\right)\cdot 149^{2} + \left(110 a + 44\right)\cdot 149^{3} + \left(14 a + 8\right)\cdot 149^{4} +O(149^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 104 a + 8 + \left(41 a + 33\right)\cdot 149 + \left(25 a + 78\right)\cdot 149^{2} + \left(98 a + 133\right)\cdot 149^{3} + \left(97 a + 101\right)\cdot 149^{4} +O(149^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 95 + 30\cdot 149 + 148\cdot 149^{2} + 81\cdot 149^{3} + 57\cdot 149^{4} +O(149^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 45 a + 126 + \left(107 a + 95\right)\cdot 149 + \left(123 a + 137\right)\cdot 149^{2} + \left(50 a + 53\right)\cdot 149^{3} + \left(51 a + 96\right)\cdot 149^{4} +O(149^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 74 + 133\cdot 149 + 118\cdot 149^{2} + 12\cdot 149^{3} + 43\cdot 149^{4} +O(149^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 140 a + 141 + \left(51 a + 87\right)\cdot 149 + \left(a + 140\right)\cdot 149^{2} + \left(38 a + 42\right)\cdot 149^{3} + \left(134 a + 105\right)\cdot 149^{4} +O(149^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 47 + 59\cdot 149 + 27\cdot 149^{2} + 77\cdot 149^{3} + 34\cdot 149^{4} +O(149^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character valueComplex conjugation
$1$$1$$()$$14$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$2$
$210$$4$$(1,2,3,4)$$2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$