Properties

Label 14.81323773e5.30t565.1c1
Dimension 14
Group $S_7$
Conductor $ 81323773^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$3557030566350296673671247852278088430093= 81323773^{5} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} - 3 x^{5} + 12 x^{4} + x^{3} - 12 x^{2} + x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Even
Determinant: 1.81323773.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 113 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 113 }$: $ x^{2} + 101 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 38 a + 112 + \left(96 a + 78\right)\cdot 113 + \left(106 a + 58\right)\cdot 113^{2} + \left(100 a + 65\right)\cdot 113^{3} + \left(8 a + 52\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 + 44\cdot 113 + 63\cdot 113^{2} + 61\cdot 113^{3} + 25\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 51 a + 1 + \left(20 a + 105\right)\cdot 113 + \left(9 a + 15\right)\cdot 113^{2} + \left(16 a + 94\right)\cdot 113^{3} + \left(5 a + 13\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 29 a + 25 + \left(83 a + 65\right)\cdot 113 + \left(11 a + 74\right)\cdot 113^{2} + \left(84 a + 22\right)\cdot 113^{3} + \left(4 a + 78\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 75 a + 3 + \left(16 a + 67\right)\cdot 113 + \left(6 a + 1\right)\cdot 113^{2} + \left(12 a + 40\right)\cdot 113^{3} + \left(104 a + 58\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 84 a + 34 + \left(29 a + 18\right)\cdot 113 + \left(101 a + 19\right)\cdot 113^{2} + \left(28 a + 3\right)\cdot 113^{3} + \left(108 a + 51\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 62 a + 48 + \left(92 a + 73\right)\cdot 113 + \left(103 a + 105\right)\cdot 113^{2} + \left(96 a + 51\right)\cdot 113^{3} + \left(107 a + 59\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$2$
$210$$4$$(1,2,3,4)$$-2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.