Properties

Label 14.80750473e9.30t565.1c1
Dimension 14
Group $S_7$
Conductor $ 80750473^{9}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$145984139482543474394036898428164293026730554669172338103254154556429513= 80750473^{9} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 7 x^{5} + 6 x^{4} + 9 x^{3} - 5 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Even
Determinant: 1.80750473.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ a + 14 + \left(25 a + 10\right)\cdot 29 + \left(9 a + 25\right)\cdot 29^{2} + \left(4 a + 7\right)\cdot 29^{3} + \left(22 a + 6\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 9 + \left(24 a + 13\right)\cdot 29 + \left(13 a + 13\right)\cdot 29^{2} + \left(19 a + 19\right)\cdot 29^{3} + \left(11 a + 16\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 a + 19 + \left(3 a + 18\right)\cdot 29 + \left(19 a + 20\right)\cdot 29^{2} + \left(24 a + 19\right)\cdot 29^{3} + \left(6 a + 25\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 3 + \left(24 a + 28\right)\cdot 29 + \left(2 a + 11\right)\cdot 29^{2} + \left(17 a + 14\right)\cdot 29^{3} + \left(22 a + 9\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 27 a + 19 + \left(4 a + 15\right)\cdot 29 + 15 a\cdot 29^{2} + \left(9 a + 16\right)\cdot 29^{3} + \left(17 a + 26\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 13 + \left(4 a + 1\right)\cdot 29 + \left(26 a + 2\right)\cdot 29^{2} + \left(11 a + 10\right)\cdot 29^{3} + \left(6 a + 18\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 11 + 28\cdot 29 + 12\cdot 29^{2} + 28\cdot 29^{3} + 12\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$2$
$210$$4$$(1,2,3,4)$$2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.