Properties

Label 14.7e9_139e9_5483e9.30t565.1c1
Dimension 14
Group $S_7$
Conductor $ 7^{9} \cdot 139^{9} \cdot 5483^{9}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$3500900561442135938096267525046311456673706472523766210421039= 7^{9} \cdot 139^{9} \cdot 5483^{9} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{5} - 3 x^{4} + x^{3} + 4 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Odd
Determinant: 1.7_139_5483.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 17 a + 25 + 45\cdot 61 + \left(60 a + 29\right)\cdot 61^{2} + \left(39 a + 47\right)\cdot 61^{3} + \left(30 a + 54\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 15\cdot 61 + 48\cdot 61^{2} + 55\cdot 61^{3} + 31\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 11 + \left(28 a + 54\right)\cdot 61 + \left(57 a + 42\right)\cdot 61^{2} + \left(30 a + 53\right)\cdot 61^{3} + \left(31 a + 20\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 47 a + 25 + \left(32 a + 7\right)\cdot 61 + \left(3 a + 11\right)\cdot 61^{2} + \left(30 a + 27\right)\cdot 61^{3} + \left(29 a + 21\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 29 a + 50 + \left(11 a + 24\right)\cdot 61 + \left(44 a + 25\right)\cdot 61^{2} + \left(29 a + 23\right)\cdot 61^{3} + \left(14 a + 42\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 32 a + 18 + \left(49 a + 7\right)\cdot 61 + \left(16 a + 58\right)\cdot 61^{2} + \left(31 a + 8\right)\cdot 61^{3} + \left(46 a + 27\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 44 a + 42 + \left(60 a + 28\right)\cdot 61 + 28\cdot 61^{2} + \left(21 a + 27\right)\cdot 61^{3} + \left(30 a + 45\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$2$
$210$$4$$(1,2,3,4)$$2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.