Properties

Label 14.7e5_17e6_2017e5.30t565.1c1
Dimension 14
Group $S_7$
Conductor $ 7^{5} \cdot 17^{6} \cdot 2017^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$13542948264111464972865817831= 7^{5} \cdot 17^{6} \cdot 2017^{5} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 2 x^{5} + 6 x^{4} - 3 x^{3} - 2 x^{2} + 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Odd
Determinant: 1.7_2017.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 191 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 191 }$: $ x^{2} + 190 x + 19 $
Roots:
$r_{ 1 }$ $=$ $ 155 + 112\cdot 191 + 159\cdot 191^{2} + 163\cdot 191^{3} + 65\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 93 + \left(39 a + 139\right)\cdot 191 + \left(44 a + 179\right)\cdot 191^{2} + \left(185 a + 41\right)\cdot 191^{3} + \left(13 a + 140\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 175 + 160\cdot 191 + 180\cdot 191^{2} + 54\cdot 191^{3} + 42\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 158 + 126\cdot 191 + 115\cdot 191^{2} + 133\cdot 191^{3} +O\left(191^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 24 a + 126 + 133\cdot 191 + \left(98 a + 113\right)\cdot 191^{2} + \left(99 a + 92\right)\cdot 191^{3} + \left(112 a + 75\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 184 a + 100 + \left(151 a + 171\right)\cdot 191 + \left(146 a + 184\right)\cdot 191^{2} + \left(5 a + 182\right)\cdot 191^{3} + \left(177 a + 159\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 167 a + 150 + \left(190 a + 109\right)\cdot 191 + \left(92 a + 20\right)\cdot 191^{2} + \left(91 a + 94\right)\cdot 191^{3} + \left(78 a + 88\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$2$
$210$$4$$(1,2,3,4)$$-2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.