Properties

Label 14.7e4_263e4_41081e4.21t38.1c1
Dimension 14
Group $S_7$
Conductor $ 7^{4} \cdot 263^{4} \cdot 41081^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$32717429923500513347010248078881= 7^{4} \cdot 263^{4} \cdot 41081^{4} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 8 x^{5} + 9 x^{4} + 16 x^{3} - 18 x^{2} - 7 x + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 21T38
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 64 a + 64 + \left(41 a + 63\right)\cdot 71 + \left(34 a + 12\right)\cdot 71^{2} + \left(69 a + 51\right)\cdot 71^{3} + \left(67 a + 20\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 40 a + 22 + \left(a + 63\right)\cdot 71 + \left(45 a + 52\right)\cdot 71^{2} + \left(68 a + 44\right)\cdot 71^{3} + \left(31 a + 29\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 50 + \left(29 a + 12\right)\cdot 71 + \left(36 a + 40\right)\cdot 71^{2} + \left(a + 13\right)\cdot 71^{3} + \left(3 a + 16\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 a + \left(25 a + 11\right)\cdot 71 + \left(58 a + 35\right)\cdot 71^{2} + \left(19 a + 68\right)\cdot 71^{3} + 61 a\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 45 a + 52 + \left(45 a + 35\right)\cdot 71 + \left(12 a + 55\right)\cdot 71^{2} + \left(51 a + 49\right)\cdot 71^{3} + \left(9 a + 32\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 31 a + 31 + \left(69 a + 26\right)\cdot 71 + \left(25 a + 70\right)\cdot 71^{2} + \left(2 a + 65\right)\cdot 71^{3} + \left(39 a + 24\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 66 + 70\cdot 71 + 16\cdot 71^{2} + 61\cdot 71^{3} + 16\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$6$
$105$$2$$(1,2)(3,4)(5,6)$$2$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$2$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$0$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$2$
$420$$6$$(1,2,3)(4,5)$$0$
$840$$6$$(1,2,3,4,5,6)$$-1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.