Properties

Label 14.7e10_37e10_3907e10.42t413.1c1
Dimension 14
Group $S_7$
Conductor $ 7^{10} \cdot 37^{10} \cdot 3907^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$1125723553858192484417748175587496214514506825607304410328849= 7^{10} \cdot 37^{10} \cdot 3907^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} + 3 x^{4} - 2 x^{3} - 2 x^{2} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T413
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 11 + \left(a + 15\right)\cdot 17 + \left(10 a + 6\right)\cdot 17^{2} + \left(10 a + 12\right)\cdot 17^{3} + \left(11 a + 10\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 16 + \left(5 a + 3\right)\cdot 17 + \left(13 a + 15\right)\cdot 17^{2} + \left(10 a + 11\right)\cdot 17^{3} + \left(7 a + 15\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 a + \left(11 a + 12\right)\cdot 17 + \left(14 a + 10\right)\cdot 17^{2} + \left(14 a + 3\right)\cdot 17^{3} + \left(12 a + 1\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ a + 16 + \left(5 a + 7\right)\cdot 17 + \left(2 a + 13\right)\cdot 17^{2} + \left(2 a + 3\right)\cdot 17^{3} + \left(4 a + 16\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 + 11\cdot 17 + 16\cdot 17^{2} + 13\cdot 17^{3} + 16\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 1 + \left(15 a + 10\right)\cdot 17 + \left(6 a + 15\right)\cdot 17^{2} + \left(6 a + 12\right)\cdot 17^{3} + \left(5 a + 11\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 15 a + 1 + \left(11 a + 7\right)\cdot 17 + \left(3 a + 6\right)\cdot 17^{2} + \left(6 a + 9\right)\cdot 17^{3} + \left(9 a + 12\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$-6$
$105$$2$$(1,2)(3,4)(5,6)$$-2$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$2$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$0$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$2$
$420$$6$$(1,2,3)(4,5)$$0$
$840$$6$$(1,2,3,4,5,6)$$1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.