Properties

Label 14.7e10_353e10_2137e10.42t413.1c1
Dimension 14
Group $S_7$
Conductor $ 7^{10} \cdot 353^{10} \cdot 2137^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$16856704578141183965784213061429615337905846220316711729994881879649= 7^{10} \cdot 353^{10} \cdot 2137^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{5} - 3 x^{4} - 3 x^{3} + 5 x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T413
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 107 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 107 }$: $ x^{2} + 103 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 69 a + 96 + \left(38 a + 104\right)\cdot 107 + \left(41 a + 19\right)\cdot 107^{2} + \left(93 a + 12\right)\cdot 107^{3} + \left(26 a + 96\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 38 a + 51 + \left(68 a + 83\right)\cdot 107 + \left(65 a + 39\right)\cdot 107^{2} + \left(13 a + 23\right)\cdot 107^{3} + \left(80 a + 3\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 105 + 43\cdot 107 + 42\cdot 107^{2} + 84\cdot 107^{3} + 59\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 75 + 50\cdot 107 + 40\cdot 107^{2} + 35\cdot 107^{3} + 7\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 + 43\cdot 107 + 89\cdot 107^{2} + 60\cdot 107^{3} + 39\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 65 a + 78 + \left(78 a + 86\right)\cdot 107 + \left(a + 26\right)\cdot 107^{2} + \left(89 a + 89\right)\cdot 107^{3} + \left(10 a + 26\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 42 a + 17 + \left(28 a + 15\right)\cdot 107 + \left(105 a + 62\right)\cdot 107^{2} + \left(17 a + 15\right)\cdot 107^{3} + \left(96 a + 88\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$-6$
$105$$2$$(1,2)(3,4)(5,6)$$-2$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$2$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$0$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$2$
$420$$6$$(1,2,3)(4,5)$$0$
$840$$6$$(1,2,3,4,5,6)$$1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.