Properties

Label 14.79e9_97e9_103e9.30t565.1
Dimension 14
Group $S_7$
Conductor $ 79^{9} \cdot 97^{9} \cdot 103^{9}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$118884285598364684003269601397420408215273249132572009= 79^{9} \cdot 97^{9} \cdot 103^{9} $
Artin number field: Splitting field of $f= x^{7} - x^{4} - 2 x^{3} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 127 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 127 }$: $ x^{2} + 126 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 125 + 104\cdot 127 + 3\cdot 127^{2} + 87\cdot 127^{3} + 73\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 22 a + 60 + \left(62 a + 105\right)\cdot 127 + \left(11 a + 113\right)\cdot 127^{2} + \left(4 a + 83\right)\cdot 127^{3} + \left(109 a + 117\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 34 + \left(107 a + 105\right)\cdot 127 + \left(67 a + 3\right)\cdot 127^{2} + \left(76 a + 124\right)\cdot 127^{3} + \left(123 a + 42\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 31 a + 69 + \left(12 a + 55\right)\cdot 127 + \left(26 a + 45\right)\cdot 127^{2} + \left(39 a + 122\right)\cdot 127^{3} + \left(36 a + 108\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 96 a + 100 + \left(114 a + 36\right)\cdot 127 + \left(100 a + 59\right)\cdot 127^{2} + \left(87 a + 8\right)\cdot 127^{3} + \left(90 a + 106\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 105 a + 82 + \left(64 a + 18\right)\cdot 127 + \left(115 a + 63\right)\cdot 127^{2} + \left(122 a + 76\right)\cdot 127^{3} + \left(17 a + 95\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 123 a + 38 + \left(19 a + 81\right)\cdot 127 + \left(59 a + 91\right)\cdot 127^{2} + \left(50 a + 5\right)\cdot 127^{3} + \left(3 a + 90\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.