Properties

Label 14.780401e9.30t565.1c1
Dimension 14
Group $S_7$
Conductor $ 780401^{9}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$107364413252354568601465198823676898216569245452783601= 780401^{9} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + 2 x^{5} - x^{4} - 2 x^{3} + 2 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Even
Determinant: 1.780401.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 199 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 199 }$: $ x^{2} + 193 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 15 a + 26 + \left(50 a + 166\right)\cdot 199 + \left(88 a + 61\right)\cdot 199^{2} + \left(103 a + 86\right)\cdot 199^{3} + \left(144 a + 67\right)\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 184 a + 116 + \left(148 a + 53\right)\cdot 199 + \left(110 a + 143\right)\cdot 199^{2} + \left(95 a + 21\right)\cdot 199^{3} + \left(54 a + 35\right)\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 183 + 98\cdot 199 + 171\cdot 199^{2} + 109\cdot 199^{3} + 13\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 68 + 138\cdot 199 + 3\cdot 199^{2} + 110\cdot 199^{3} + 102\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 189 a + 14 + \left(6 a + 24\right)\cdot 199 + \left(152 a + 162\right)\cdot 199^{2} + \left(151 a + 74\right)\cdot 199^{3} + \left(186 a + 35\right)\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 153 + \left(192 a + 75\right)\cdot 199 + \left(46 a + 72\right)\cdot 199^{2} + \left(47 a + 37\right)\cdot 199^{3} + \left(12 a + 9\right)\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 39 + 40\cdot 199 + 181\cdot 199^{2} + 156\cdot 199^{3} + 134\cdot 199^{4} +O\left(199^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$2$
$210$$4$$(1,2,3,4)$$2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.