Properties

Label 14.77004029e5.30t565.1
Dimension 14
Group $S_7$
Conductor $ 77004029^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$2707492389123098795461239340699591131149= 77004029^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 7 x^{5} + 4 x^{4} + 15 x^{3} - 2 x^{2} - 9 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$: $ x^{2} + 82 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 52 a + 77 + \left(9 a + 33\right)\cdot 89 + \left(28 a + 66\right)\cdot 89^{2} + \left(61 a + 88\right)\cdot 89^{3} + \left(51 a + 37\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 19 + 12\cdot 89 + 13\cdot 89^{2} + 63\cdot 89^{3} + 8\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 37 a + 85 + \left(79 a + 48\right)\cdot 89 + \left(60 a + 75\right)\cdot 89^{2} + \left(27 a + 44\right)\cdot 89^{3} + \left(37 a + 71\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 49 a + 41 + \left(19 a + 73\right)\cdot 89 + 20 a\cdot 89^{2} + \left(10 a + 81\right)\cdot 89^{3} + \left(75 a + 66\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 40 a + 28 + \left(69 a + 72\right)\cdot 89 + \left(68 a + 33\right)\cdot 89^{2} + \left(78 a + 43\right)\cdot 89^{3} + \left(13 a + 48\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 49 + 46\cdot 89 + 3\cdot 89^{2} + 72\cdot 89^{3} + 28\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 58 + 68\cdot 89 + 73\cdot 89^{2} + 51\cdot 89^{3} + 4\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $-2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.