Properties

Label 14.689033e4.21t38.1
Dimension 14
Group $S_7$
Conductor $ 689033^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$225403205868434057557921= 689033^{4} $
Artin number field: Splitting field of $f= x^{7} - x^{5} - 3 x^{4} - x^{3} + 2 x^{2} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 21T38
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 257 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 257 }$: $ x^{2} + 251 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 237 + 69\cdot 257 + 255\cdot 257^{2} + 122\cdot 257^{3} + 199\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 55 + \left(31 a + 67\right)\cdot 257 + \left(95 a + 88\right)\cdot 257^{2} + \left(77 a + 154\right)\cdot 257^{3} + \left(188 a + 45\right)\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 157 + 45\cdot 257 + 116\cdot 257^{2} + 2\cdot 257^{3} + 46\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 251 a + 91 + \left(225 a + 247\right)\cdot 257 + \left(161 a + 113\right)\cdot 257^{2} + \left(179 a + 9\right)\cdot 257^{3} + \left(68 a + 70\right)\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 214 a + 132 + \left(209 a + 113\right)\cdot 257 + \left(209 a + 193\right)\cdot 257^{2} + \left(150 a + 197\right)\cdot 257^{3} + \left(72 a + 243\right)\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 225 + 96\cdot 257 + 46\cdot 257^{2} + 162\cdot 257^{3} + 151\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 43 a + 131 + \left(47 a + 130\right)\cdot 257 + \left(47 a + 214\right)\cdot 257^{2} + \left(106 a + 121\right)\cdot 257^{3} + \left(184 a + 14\right)\cdot 257^{4} +O\left(257^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $-1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.