Properties

Label 14.674057e4.21t38.1
Dimension 14
Group $S_7$
Conductor $ 674057^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$206436502533627634884001= 674057^{4} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} + 5 x^{5} - 6 x^{4} + 3 x^{3} - x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 21T38
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: $ x^{2} + 97 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 98 + 30\cdot 101 + 54\cdot 101^{2} + 17\cdot 101^{3} + 93\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 94 a + 48 + \left(26 a + 7\right)\cdot 101 + \left(66 a + 13\right)\cdot 101^{2} + \left(64 a + 32\right)\cdot 101^{3} + \left(41 a + 21\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 68 + 83\cdot 101 + 92\cdot 101^{2} + 29\cdot 101^{3} + 35\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 3 + \left(40 a + 30\right)\cdot 101 + \left(100 a + 88\right)\cdot 101^{2} + \left(31 a + 17\right)\cdot 101^{3} + \left(23 a + 65\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 20 + \left(74 a + 21\right)\cdot 101 + \left(34 a + 49\right)\cdot 101^{2} + \left(36 a + 22\right)\cdot 101^{3} + \left(59 a + 22\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 46 + 45\cdot 101 + 60\cdot 101^{2} + 36\cdot 101^{3} + 40\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 96 a + 23 + \left(60 a + 84\right)\cdot 101 + 45\cdot 101^{2} + \left(69 a + 45\right)\cdot 101^{3} + \left(77 a + 25\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $-1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.