Properties

Label 14.5e9_53e9_1327e9.30t565.1
Dimension 14
Group $S_7$
Conductor $ 5^{9} \cdot 53^{9} \cdot 1327^{9}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$82233953727333399763654138398412069669377677734375= 5^{9} \cdot 53^{9} \cdot 1327^{9} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 2 x^{4} + x^{3} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 659 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 198 + 23\cdot 659 + 152\cdot 659^{2} + 170\cdot 659^{3} + 92\cdot 659^{4} +O\left(659^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 307 + 109\cdot 659 + 175\cdot 659^{2} + 260\cdot 659^{3} + 652\cdot 659^{4} +O\left(659^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 312 + 7\cdot 659 + 100\cdot 659^{2} + 302\cdot 659^{3} + 90\cdot 659^{4} +O\left(659^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 357 + 397\cdot 659 + 594\cdot 659^{2} + 483\cdot 659^{3} + 535\cdot 659^{4} +O\left(659^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 457 + 9\cdot 659 + 2\cdot 659^{2} + 251\cdot 659^{3} + 433\cdot 659^{4} +O\left(659^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 480 + 621\cdot 659 + 17\cdot 659^{2} + 489\cdot 659^{3} + 569\cdot 659^{4} +O\left(659^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 526 + 148\cdot 659 + 276\cdot 659^{2} + 20\cdot 659^{3} + 262\cdot 659^{4} +O\left(659^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.