Properties

Label 14.5e10_37e5_347e5.30t565.1
Dimension 14
Group $S_7$
Conductor $ 5^{10} \cdot 37^{5} \cdot 347^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$3406873731350781720693359375= 5^{10} \cdot 37^{5} \cdot 347^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{6} + x^{5} - x^{4} + 2 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 44 a + 35 + \left(25 a + 4\right)\cdot 53 + \left(49 a + 10\right)\cdot 53^{2} + \left(11 a + 34\right)\cdot 53^{3} + 35\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 + 21\cdot 53 + 16\cdot 53^{2} + 29\cdot 53^{3} + 35\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 52 + \left(27 a + 10\right)\cdot 53 + \left(3 a + 23\right)\cdot 53^{2} + \left(41 a + 32\right)\cdot 53^{3} + \left(52 a + 24\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 52 a + 51 + \left(41 a + 51\right)\cdot 53 + \left(20 a + 39\right)\cdot 53^{2} + \left(31 a + 47\right)\cdot 53^{3} + \left(25 a + 16\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 31 + 2\cdot 53 + 52\cdot 53^{2} + 10\cdot 53^{3} + 26\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ a + 47 + \left(11 a + 8\right)\cdot 53 + \left(32 a + 28\right)\cdot 53^{2} + \left(21 a + 46\right)\cdot 53^{3} + \left(27 a + 34\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 36 + 5\cdot 53 + 42\cdot 53^{2} + 10\cdot 53^{3} + 38\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $-2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.