Properties

Label 14.59e4_62473e4.21t38.1
Dimension 14
Group $S_7$
Conductor $ 59^{4} \cdot 62473^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$184576961740524521459197201= 59^{4} \cdot 62473^{4} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} + 4 x^{4} - 2 x^{3} - 4 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 21T38
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 269 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 269 }$: $ x^{2} + 268 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 199 a + 208 + \left(159 a + 69\right)\cdot 269 + \left(80 a + 125\right)\cdot 269^{2} + \left(51 a + 121\right)\cdot 269^{3} + \left(9 a + 117\right)\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 238 a + 162 + \left(142 a + 241\right)\cdot 269 + \left(231 a + 231\right)\cdot 269^{2} + \left(120 a + 180\right)\cdot 269^{3} + \left(128 a + 131\right)\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 70 a + 138 + \left(109 a + 30\right)\cdot 269 + \left(188 a + 46\right)\cdot 269^{2} + \left(217 a + 92\right)\cdot 269^{3} + \left(259 a + 75\right)\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 130 a + 162 + \left(86 a + 144\right)\cdot 269 + \left(3 a + 158\right)\cdot 269^{2} + \left(32 a + 165\right)\cdot 269^{3} + \left(222 a + 227\right)\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 253 + 72\cdot 269 + 118\cdot 269^{2} + 251\cdot 269^{3} + 235\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 139 a + 23 + \left(182 a + 101\right)\cdot 269 + \left(265 a + 75\right)\cdot 269^{2} + \left(236 a + 194\right)\cdot 269^{3} + \left(46 a + 148\right)\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 31 a + 131 + \left(126 a + 146\right)\cdot 269 + \left(37 a + 51\right)\cdot 269^{2} + \left(148 a + 70\right)\cdot 269^{3} + \left(140 a + 139\right)\cdot 269^{4} +O\left(269^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $-1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.