Properties

Label 14.5939e10_11087e10.42t413.1
Dimension 14
Group $S_7$
Conductor $ 5939^{10} \cdot 11087^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$1532052782948395059353534598855179137810374901872713676455639707043981620126249= 5939^{10} \cdot 11087^{10} $
Artin number field: Splitting field of $f= x^{7} - 7 x^{5} - 2 x^{4} + 11 x^{3} + 3 x^{2} - 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T413
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 281 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 281 }$: $ x^{2} + 280 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 61 a + 175 + \left(258 a + 178\right)\cdot 281 + \left(100 a + 227\right)\cdot 281^{2} + \left(33 a + 54\right)\cdot 281^{3} + \left(255 a + 137\right)\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 220 a + 236 + \left(22 a + 94\right)\cdot 281 + \left(180 a + 70\right)\cdot 281^{2} + \left(247 a + 268\right)\cdot 281^{3} + \left(25 a + 77\right)\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 254 + 271\cdot 281 + 42\cdot 281^{2} + 150\cdot 281^{3} + 263\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 272 a + 225 + \left(30 a + 77\right)\cdot 281 + \left(62 a + 53\right)\cdot 281^{2} + \left(245 a + 252\right)\cdot 281^{3} + \left(154 a + 223\right)\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 216 + \left(250 a + 117\right)\cdot 281 + \left(218 a + 84\right)\cdot 281^{2} + \left(35 a + 154\right)\cdot 281^{3} + \left(126 a + 133\right)\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 156 a + 212 + \left(240 a + 8\right)\cdot 281 + \left(241 a + 41\right)\cdot 281^{2} + \left(179 a + 153\right)\cdot 281^{3} + \left(96 a + 185\right)\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 125 a + 87 + \left(40 a + 93\right)\cdot 281 + \left(39 a + 42\right)\cdot 281^{2} + \left(101 a + 91\right)\cdot 281^{3} + \left(184 a + 102\right)\cdot 281^{4} +O\left(281^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.