Properties

Label 14.5560327e9.30t565.1
Dimension 14
Group $S_7$
Conductor $ 5560327^{9}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$5080459536195692901955781920636572415240679266645815972943687= 5560327^{9} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 3 x^{5} + 7 x^{4} + x^{3} - 7 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 293 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 293 }$: $ x^{2} + 292 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 208 a + 94 + \left(264 a + 111\right)\cdot 293 + \left(139 a + 118\right)\cdot 293^{2} + \left(22 a + 221\right)\cdot 293^{3} + \left(192 a + 127\right)\cdot 293^{4} +O\left(293^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 85 a + 9 + \left(28 a + 168\right)\cdot 293 + \left(153 a + 286\right)\cdot 293^{2} + \left(270 a + 103\right)\cdot 293^{3} + \left(100 a + 4\right)\cdot 293^{4} +O\left(293^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 115 + 50\cdot 293 + 27\cdot 293^{2} + 166\cdot 293^{3} + 284\cdot 293^{4} +O\left(293^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 137 a + 152 + \left(282 a + 250\right)\cdot 293 + \left(107 a + 10\right)\cdot 293^{2} + \left(235 a + 185\right)\cdot 293^{3} + \left(88 a + 85\right)\cdot 293^{4} +O\left(293^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 182 a + 20 + \left(145 a + 116\right)\cdot 293 + \left(145 a + 153\right)\cdot 293^{2} + \left(78 a + 271\right)\cdot 293^{3} + \left(167 a + 27\right)\cdot 293^{4} +O\left(293^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 111 a + 202 + \left(147 a + 79\right)\cdot 293 + \left(147 a + 153\right)\cdot 293^{2} + \left(214 a + 204\right)\cdot 293^{3} + \left(125 a + 116\right)\cdot 293^{4} +O\left(293^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 156 a + 289 + \left(10 a + 102\right)\cdot 293 + \left(185 a + 129\right)\cdot 293^{2} + \left(57 a + 19\right)\cdot 293^{3} + \left(204 a + 232\right)\cdot 293^{4} +O\left(293^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.