Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 293 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 293 }$: $ x^{2} + 292 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 208 a + 94 + \left(264 a + 111\right)\cdot 293 + \left(139 a + 118\right)\cdot 293^{2} + \left(22 a + 221\right)\cdot 293^{3} + \left(192 a + 127\right)\cdot 293^{4} +O\left(293^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 85 a + 9 + \left(28 a + 168\right)\cdot 293 + \left(153 a + 286\right)\cdot 293^{2} + \left(270 a + 103\right)\cdot 293^{3} + \left(100 a + 4\right)\cdot 293^{4} +O\left(293^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 115 + 50\cdot 293 + 27\cdot 293^{2} + 166\cdot 293^{3} + 284\cdot 293^{4} +O\left(293^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 137 a + 152 + \left(282 a + 250\right)\cdot 293 + \left(107 a + 10\right)\cdot 293^{2} + \left(235 a + 185\right)\cdot 293^{3} + \left(88 a + 85\right)\cdot 293^{4} +O\left(293^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 182 a + 20 + \left(145 a + 116\right)\cdot 293 + \left(145 a + 153\right)\cdot 293^{2} + \left(78 a + 271\right)\cdot 293^{3} + \left(167 a + 27\right)\cdot 293^{4} +O\left(293^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 111 a + 202 + \left(147 a + 79\right)\cdot 293 + \left(147 a + 153\right)\cdot 293^{2} + \left(214 a + 204\right)\cdot 293^{3} + \left(125 a + 116\right)\cdot 293^{4} +O\left(293^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 156 a + 289 + \left(10 a + 102\right)\cdot 293 + \left(185 a + 129\right)\cdot 293^{2} + \left(57 a + 19\right)\cdot 293^{3} + \left(204 a + 232\right)\cdot 293^{4} +O\left(293^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$14$ |
| $21$ |
$2$ |
$(1,2)$ |
$6$ |
| $105$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$2$ |
| $105$ |
$2$ |
$(1,2)(3,4)$ |
$2$ |
| $70$ |
$3$ |
$(1,2,3)$ |
$2$ |
| $280$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$-1$ |
| $210$ |
$4$ |
$(1,2,3,4)$ |
$0$ |
| $630$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$0$ |
| $504$ |
$5$ |
$(1,2,3,4,5)$ |
$-1$ |
| $210$ |
$6$ |
$(1,2,3)(4,5)(6,7)$ |
$2$ |
| $420$ |
$6$ |
$(1,2,3)(4,5)$ |
$0$ |
| $840$ |
$6$ |
$(1,2,3,4,5,6)$ |
$-1$ |
| $720$ |
$7$ |
$(1,2,3,4,5,6,7)$ |
$0$ |
| $504$ |
$10$ |
$(1,2,3,4,5)(6,7)$ |
$1$ |
| $420$ |
$12$ |
$(1,2,3,4)(5,6,7)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.