Properties

Label 14.541e4_9811e4.21t38.1c1
Dimension 14
Group $S_7$
Conductor $ 541^{4} \cdot 9811^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$793674017929987124125356001= 541^{4} \cdot 9811^{4} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} - 6 x^{3} - 3 x^{2} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 21T38
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 88 a + 20 + \left(25 a + 13\right)\cdot 97 + \left(78 a + 5\right)\cdot 97^{2} + \left(a + 19\right)\cdot 97^{3} + \left(67 a + 6\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 11 + \left(71 a + 48\right)\cdot 97 + \left(18 a + 57\right)\cdot 97^{2} + \left(95 a + 39\right)\cdot 97^{3} + \left(29 a + 71\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 42 a + 59 + \left(58 a + 84\right)\cdot 97 + \left(48 a + 94\right)\cdot 97^{2} + \left(34 a + 6\right)\cdot 97^{3} + \left(83 a + 25\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 76 + 97 + 93\cdot 97^{2} + 17\cdot 97^{3} + 18\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 + 17\cdot 97 + 17\cdot 97^{2} + 28\cdot 97^{3} + 74\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 11 + 25\cdot 97 + 35\cdot 97^{2} + 89\cdot 97^{3} + 21\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 55 a + 4 + \left(38 a + 4\right)\cdot 97 + \left(48 a + 85\right)\cdot 97^{2} + \left(62 a + 89\right)\cdot 97^{3} + \left(13 a + 73\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$6$
$105$$2$$(1,2)(3,4)(5,6)$$2$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$2$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$0$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$2$
$420$$6$$(1,2,3)(4,5)$$0$
$840$$6$$(1,2,3,4,5,6)$$-1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.