Properties

Label 14.4850543e5.30t565.1
Dimension 14
Group $S_7$
Conductor $ 4850543^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$2685046397963032809315151635760943= 4850543^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 2 x^{5} + 4 x^{4} - x^{3} - 4 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 41 a + 3 + \left(40 a + 1\right)\cdot 47 + \left(3 a + 14\right)\cdot 47^{2} + \left(18 a + 8\right)\cdot 47^{3} + \left(44 a + 43\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 38 + \left(6 a + 41\right)\cdot 47 + \left(43 a + 27\right)\cdot 47^{2} + \left(28 a + 40\right)\cdot 47^{3} + \left(2 a + 19\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 38 + 5\cdot 47 + 25\cdot 47^{2} + 2\cdot 47^{3} + 9\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 41 a + 26 + \left(41 a + 1\right)\cdot 47 + \left(18 a + 19\right)\cdot 47^{2} + \left(15 a + 1\right)\cdot 47^{3} + \left(41 a + 6\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 14 + \left(5 a + 44\right)\cdot 47 + \left(28 a + 14\right)\cdot 47^{2} + \left(31 a + 13\right)\cdot 47^{3} + \left(5 a + 26\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 8 a + 27 + \left(17 a + 33\right)\cdot 47 + \left(45 a + 6\right)\cdot 47^{2} + \left(10 a + 2\right)\cdot 47^{3} + \left(a + 46\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 39 a + 43 + \left(29 a + 12\right)\cdot 47 + \left(a + 33\right)\cdot 47^{2} + \left(36 a + 25\right)\cdot 47^{3} + \left(45 a + 37\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $-2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.