Properties

Label 14.47e9_1171783e9.30t565.1c1
Dimension 14
Group $S_7$
Conductor $ 47^{9} \cdot 1171783^{9}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$4661282870423101565751572513358331056559409569167945489674969015504201= 47^{9} \cdot 1171783^{9} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 6 x^{5} + 8 x^{4} + 8 x^{3} - 6 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Even
Determinant: 1.47_1171783.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 78 a + 40 + \left(3 a + 12\right)\cdot 97 + \left(54 a + 72\right)\cdot 97^{2} + \left(94 a + 19\right)\cdot 97^{3} + \left(95 a + 89\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 50 + 27\cdot 97 + 78\cdot 97^{2} + 35\cdot 97^{3} + 8\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 a + 14 + \left(20 a + 56\right)\cdot 97 + \left(76 a + 62\right)\cdot 97^{2} + \left(5 a + 12\right)\cdot 97^{3} + \left(28 a + 34\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 72 a + 28 + \left(39 a + 22\right)\cdot 97 + \left(22 a + 24\right)\cdot 97^{2} + \left(13 a + 66\right)\cdot 97^{3} + \left(61 a + 30\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 19 a + 21 + \left(93 a + 35\right)\cdot 97 + \left(42 a + 25\right)\cdot 97^{2} + \left(2 a + 60\right)\cdot 97^{3} + \left(a + 90\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 25 a + 3 + \left(57 a + 87\right)\cdot 97 + \left(74 a + 6\right)\cdot 97^{2} + \left(83 a + 57\right)\cdot 97^{3} + \left(35 a + 78\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 71 a + 40 + \left(76 a + 50\right)\cdot 97 + \left(20 a + 21\right)\cdot 97^{2} + \left(91 a + 39\right)\cdot 97^{3} + \left(68 a + 56\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$2$
$210$$4$$(1,2,3,4)$$2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.