Properties

Label 14.47e10_83609e10.42t413.1
Dimension 14
Group $S_7$
Conductor $ 47^{10} \cdot 83609^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$878029020704605877845026542568173218350033843781010394497044461649= 47^{10} \cdot 83609^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 4 x^{5} + x^{4} + 6 x^{3} + 2 x^{2} - 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T413
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 6 a + 10 + \left(3 a + 7\right)\cdot 17 + \left(13 a + 4\right)\cdot 17^{2} + \left(2 a + 8\right)\cdot 17^{3} + \left(7 a + 16\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 5 + \left(a + 9\right)\cdot 17 + \left(6 a + 14\right)\cdot 17^{2} + \left(14 a + 1\right)\cdot 17^{3} + \left(2 a + 7\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 a + \left(9 a + 14\right)\cdot 17 + \left(7 a + 14\right)\cdot 17^{2} + \left(3 a + 8\right)\cdot 17^{3} + \left(9 a + 7\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 11 + \left(7 a + 12\right)\cdot 17 + \left(9 a + 12\right)\cdot 17^{2} + \left(13 a + 4\right)\cdot 17^{3} + \left(7 a + 13\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 15 + 15 a\cdot 17 + \left(10 a + 2\right)\cdot 17^{2} + \left(2 a + 10\right)\cdot 17^{3} + \left(14 a + 12\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 12 + 17 + 5\cdot 17^{2} + 2\cdot 17^{3} + 7\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 11 a + 16 + \left(13 a + 4\right)\cdot 17 + \left(3 a + 14\right)\cdot 17^{2} + \left(14 a + 14\right)\cdot 17^{3} + \left(9 a + 3\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.