Properties

Label 14.4795631e4.21t38.1
Dimension 14
Group $S_7$
Conductor $ 4795631^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$528911531354534430037561921= 4795631^{4} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{5} - 3 x^{4} - 3 x^{3} + 3 x^{2} + 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 21T38
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 349 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 349 }$: $ x^{2} + 348 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 210 a + 18 + \left(44 a + 81\right)\cdot 349 + \left(10 a + 27\right)\cdot 349^{2} + \left(244 a + 282\right)\cdot 349^{3} + \left(213 a + 210\right)\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 139 a + 228 + \left(304 a + 264\right)\cdot 349 + \left(338 a + 341\right)\cdot 349^{2} + \left(104 a + 166\right)\cdot 349^{3} + \left(135 a + 180\right)\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 81 + 311\cdot 349 + 255\cdot 349^{2} + 27\cdot 349^{3} + 40\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 223 a + 65 + \left(240 a + 108\right)\cdot 349 + \left(35 a + 95\right)\cdot 349^{2} + \left(291 a + 40\right)\cdot 349^{3} + \left(208 a + 87\right)\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 126 a + 288 + \left(108 a + 125\right)\cdot 349 + \left(313 a + 239\right)\cdot 349^{2} + \left(57 a + 295\right)\cdot 349^{3} + \left(140 a + 4\right)\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 266 + 295\cdot 349 + 145\cdot 349^{2} + 53\cdot 349^{3} + 125\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 101 + 209\cdot 349 + 290\cdot 349^{2} + 180\cdot 349^{3} + 49\cdot 349^{4} +O\left(349^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $-1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.