Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 127 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 127 }$: $ x^{2} + 126 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 39 a + 65 + \left(122 a + 66\right)\cdot 127 + \left(57 a + 110\right)\cdot 127^{2} + \left(29 a + 34\right)\cdot 127^{3} + \left(95 a + 106\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 92 + 64\cdot 127 + 32\cdot 127^{2} + 23\cdot 127^{3} + 25\cdot 127^{4} +O\left(127^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 12 + 69\cdot 127 + 125\cdot 127^{2} + 63\cdot 127^{3} + 12\cdot 127^{4} +O\left(127^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 94 a + 42 + \left(80 a + 11\right)\cdot 127 + \left(63 a + 16\right)\cdot 127^{2} + \left(7 a + 76\right)\cdot 127^{3} + \left(52 a + 104\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 33 a + 9 + \left(46 a + 125\right)\cdot 127 + \left(63 a + 125\right)\cdot 127^{2} + \left(119 a + 19\right)\cdot 127^{3} + \left(74 a + 22\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 57 + 21\cdot 127 + 51\cdot 127^{2} + 29\cdot 127^{3} + 65\cdot 127^{4} +O\left(127^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 88 a + 104 + \left(4 a + 22\right)\cdot 127 + \left(69 a + 46\right)\cdot 127^{2} + \left(97 a + 6\right)\cdot 127^{3} + \left(31 a + 45\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$14$ |
| $21$ |
$2$ |
$(1,2)$ |
$6$ |
| $105$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$2$ |
| $105$ |
$2$ |
$(1,2)(3,4)$ |
$2$ |
| $70$ |
$3$ |
$(1,2,3)$ |
$2$ |
| $280$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$-1$ |
| $210$ |
$4$ |
$(1,2,3,4)$ |
$0$ |
| $630$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$0$ |
| $504$ |
$5$ |
$(1,2,3,4,5)$ |
$-1$ |
| $210$ |
$6$ |
$(1,2,3)(4,5)(6,7)$ |
$2$ |
| $420$ |
$6$ |
$(1,2,3)(4,5)$ |
$0$ |
| $840$ |
$6$ |
$(1,2,3,4,5,6)$ |
$-1$ |
| $720$ |
$7$ |
$(1,2,3,4,5,6,7)$ |
$0$ |
| $504$ |
$10$ |
$(1,2,3,4,5)(6,7)$ |
$1$ |
| $420$ |
$12$ |
$(1,2,3,4)(5,6,7)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.