Properties

Label 14.4297259e4.21t38.1c1
Dimension 14
Group $S_7$
Conductor $ 4297259^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$341009218399056880024912561= 4297259^{4} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{5} - 3 x^{4} + 4 x^{3} + 5 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 21T38
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 157 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 157 }$: $ x^{2} + 152 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 26 a + 149 + \left(50 a + 42\right)\cdot 157 + \left(60 a + 47\right)\cdot 157^{2} + \left(30 a + 51\right)\cdot 157^{3} + \left(114 a + 99\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 22 + 78\cdot 157 + 104\cdot 157^{2} + 117\cdot 157^{3} + 85\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 63 a + 138 + \left(48 a + 98\right)\cdot 157 + \left(35 a + 102\right)\cdot 157^{2} + \left(94 a + 154\right)\cdot 157^{3} + \left(109 a + 4\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 106 + 68\cdot 157 + 131\cdot 157^{2} + 145\cdot 157^{3} + 10\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 109 + 107\cdot 157 + 26\cdot 157^{2} + 53\cdot 157^{3} + 113\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 131 a + 122 + \left(106 a + 110\right)\cdot 157 + \left(96 a + 141\right)\cdot 157^{2} + \left(126 a + 142\right)\cdot 157^{3} + \left(42 a + 11\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 94 a + 139 + \left(108 a + 120\right)\cdot 157 + \left(121 a + 73\right)\cdot 157^{2} + \left(62 a + 119\right)\cdot 157^{3} + \left(47 a + 144\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$6$
$105$$2$$(1,2)(3,4)(5,6)$$2$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$2$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$0$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$2$
$420$$6$$(1,2,3)(4,5)$$0$
$840$$6$$(1,2,3,4,5,6)$$-1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.