Properties

Label 14.41e5_1713281e5.30t565.1
Dimension 14
Group $S_7$
Conductor $ 41^{5} \cdot 1713281^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$1710260545165616552306502663328809606601= 41^{5} \cdot 1713281^{5} $
Artin number field: Splitting field of $f= x^{7} - 7 x^{5} - x^{4} + 13 x^{3} + 2 x^{2} - 6 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 277 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 277 }$: $ x^{2} + 274 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 219 a + 56 + \left(197 a + 56\right)\cdot 277 + \left(158 a + 117\right)\cdot 277^{2} + \left(201 a + 38\right)\cdot 277^{3} + \left(203 a + 196\right)\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 152 + 202\cdot 277 + 96\cdot 277^{2} + 256\cdot 277^{3} + 43\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 222 + 213\cdot 277 + 231\cdot 277^{2} + 36\cdot 277^{3} + 253\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 273 + 88\cdot 277 + 172\cdot 277^{2} + 89\cdot 277^{3} + 191\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 271 a + 132 + \left(276 a + 193\right)\cdot 277 + \left(48 a + 250\right)\cdot 277^{2} + \left(103 a + 247\right)\cdot 277^{3} + \left(250 a + 138\right)\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 58 a + 159 + \left(79 a + 153\right)\cdot 277 + \left(118 a + 118\right)\cdot 277^{2} + \left(75 a + 207\right)\cdot 277^{3} + \left(73 a + 51\right)\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 6 a + 114 + 199\cdot 277 + \left(228 a + 120\right)\cdot 277^{2} + \left(173 a + 231\right)\cdot 277^{3} + \left(26 a + 232\right)\cdot 277^{4} +O\left(277^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $-2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.