Properties

Label 14.3e6_43e9_173539e9.30t565.1
Dimension 14
Group $S_7$
Conductor $ 3^{6} \cdot 43^{9} \cdot 173539^{9}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$52301897284406367870720484806784601116534902838757922004505543673= 3^{6} \cdot 43^{9} \cdot 173539^{9} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} - 3 x^{5} + 11 x^{4} + 2 x^{3} - 10 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 83 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 83 }$: $ x^{2} + 82 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 55 + \left(80 a + 50\right)\cdot 83 + \left(8 a + 1\right)\cdot 83^{2} + \left(21 a + 53\right)\cdot 83^{3} + \left(17 a + 13\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 75 a + 22 + \left(17 a + 34\right)\cdot 83 + \left(81 a + 32\right)\cdot 83^{2} + \left(15 a + 43\right)\cdot 83^{3} + \left(55 a + 52\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 58 + \left(15 a + 45\right)\cdot 83 + \left(66 a + 53\right)\cdot 83^{2} + \left(33 a + 76\right)\cdot 83^{3} + \left(5 a + 33\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 + 67\cdot 83 + 30\cdot 83^{2} + 71\cdot 83^{3} + 41\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 60 a + 81 + \left(67 a + 37\right)\cdot 83 + \left(16 a + 21\right)\cdot 83^{2} + \left(49 a + 44\right)\cdot 83^{3} + \left(77 a + 5\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 71 a + 67 + \left(2 a + 35\right)\cdot 83 + \left(74 a + 13\right)\cdot 83^{2} + \left(61 a + 65\right)\cdot 83^{3} + \left(65 a + 9\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 8 a + 14 + \left(65 a + 60\right)\cdot 83 + \left(a + 12\right)\cdot 83^{2} + \left(67 a + 61\right)\cdot 83^{3} + \left(27 a + 8\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.