Properties

Label 14.3e6_37e5_2381e5.30t565.1c1
Dimension 14
Group $S_7$
Conductor $ 3^{6} \cdot 37^{5} \cdot 2381^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$3868415597281715332824607353= 3^{6} \cdot 37^{5} \cdot 2381^{5} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + 2 x^{5} + x^{4} - 2 x^{3} + 2 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Even
Determinant: 1.37_2381.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 21\cdot 71 + 57\cdot 71^{2} + 50\cdot 71^{3} + 52\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 61 a + 55 + \left(31 a + 11\right)\cdot 71 + \left(70 a + 54\right)\cdot 71^{2} + \left(6 a + 64\right)\cdot 71^{3} + \left(51 a + 3\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 38 + 71 + 38\cdot 71^{2} + 23\cdot 71^{3} + 46\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 35 + \left(39 a + 14\right)\cdot 71 + 21\cdot 71^{2} + \left(64 a + 8\right)\cdot 71^{3} + \left(19 a + 28\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 32 a + 33 + \left(17 a + 12\right)\cdot 71 + \left(25 a + 43\right)\cdot 71^{2} + \left(16 a + 61\right)\cdot 71^{3} + \left(39 a + 10\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 26 + 65\cdot 71 + 64\cdot 71^{2} + 5\cdot 71^{3} + 69\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 39 a + 26 + \left(53 a + 15\right)\cdot 71 + \left(45 a + 5\right)\cdot 71^{2} + \left(54 a + 69\right)\cdot 71^{3} + \left(31 a + 1\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$2$
$210$$4$$(1,2,3,4)$$-2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.