Properties

Label 14.3e6_37e4_2381e4.21t38.1
Dimension 14
Group $S_7$
Conductor $ 3^{6} \cdot 37^{4} \cdot 2381^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$43910866400464435029849= 3^{6} \cdot 37^{4} \cdot 2381^{4} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + 2 x^{5} + x^{4} - 2 x^{3} + 2 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 21T38
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 21\cdot 71 + 57\cdot 71^{2} + 50\cdot 71^{3} + 52\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 61 a + 55 + \left(31 a + 11\right)\cdot 71 + \left(70 a + 54\right)\cdot 71^{2} + \left(6 a + 64\right)\cdot 71^{3} + \left(51 a + 3\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 38 + 71 + 38\cdot 71^{2} + 23\cdot 71^{3} + 46\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 35 + \left(39 a + 14\right)\cdot 71 + 21\cdot 71^{2} + \left(64 a + 8\right)\cdot 71^{3} + \left(19 a + 28\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 32 a + 33 + \left(17 a + 12\right)\cdot 71 + \left(25 a + 43\right)\cdot 71^{2} + \left(16 a + 61\right)\cdot 71^{3} + \left(39 a + 10\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 26 + 65\cdot 71 + 64\cdot 71^{2} + 5\cdot 71^{3} + 69\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 39 a + 26 + \left(53 a + 15\right)\cdot 71 + \left(45 a + 5\right)\cdot 71^{2} + \left(54 a + 69\right)\cdot 71^{3} + \left(31 a + 1\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $-1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.