Properties

Label 14.3e6_359e9_25771e9.30t565.1c1
Dimension 14
Group $S_7$
Conductor $ 3^{6} \cdot 359^{9} \cdot 25771^{9}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$362042040523723982328190009459415695015758124505654883920224457061= 3^{6} \cdot 359^{9} \cdot 25771^{9} $
Artin number field: Splitting field of $f= x^{7} - 8 x^{5} - x^{4} + 18 x^{3} + 5 x^{2} - 10 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 30T565
Parity: Even
Determinant: 1.359_25771.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 79 a + 49 + \left(46 a + 18\right)\cdot 97 + \left(80 a + 53\right)\cdot 97^{2} + \left(18 a + 31\right)\cdot 97^{3} + \left(9 a + 27\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 a + 88 + \left(22 a + 69\right)\cdot 97 + \left(68 a + 46\right)\cdot 97^{2} + \left(54 a + 45\right)\cdot 97^{3} + \left(64 a + 30\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 31 + \left(50 a + 83\right)\cdot 97 + \left(16 a + 86\right)\cdot 97^{2} + \left(78 a + 66\right)\cdot 97^{3} + \left(87 a + 17\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 79 + 74\cdot 97 + 30\cdot 97^{2} + 59\cdot 97^{3} + 62\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 36 a + 41 + \left(69 a + 72\right)\cdot 97 + \left(3 a + 71\right)\cdot 97^{2} + \left(75 a + 40\right)\cdot 97^{3} + \left(26 a + 80\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 65 a + 23 + \left(74 a + 60\right)\cdot 97 + \left(28 a + 92\right)\cdot 97^{2} + \left(42 a + 31\right)\cdot 97^{3} + \left(32 a + 40\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 61 a + 77 + \left(27 a + 8\right)\cdot 97 + \left(93 a + 6\right)\cdot 97^{2} + \left(21 a + 15\right)\cdot 97^{3} + \left(70 a + 32\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$14$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$2$
$210$$4$$(1,2,3,4)$$2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$-1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.