Properties

Label 14.3e6_280909e4.21t38.1
Dimension 14
Group $S_7$
Conductor $ 3^{6} \cdot 280909^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$14$
Group:$S_7$
Conductor:$4539313140437784262030569= 3^{6} \cdot 280909^{4} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} + 6 x^{4} - 3 x^{3} - 5 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 21T38
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 54 a + 31 + \left(61 a + 56\right)\cdot 67 + \left(66 a + 2\right)\cdot 67^{2} + \left(58 a + 53\right)\cdot 67^{3} + \left(56 a + 34\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 + 10\cdot 67 + 51\cdot 67^{2} + 15\cdot 67^{3} + 66\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 51 + \left(5 a + 62\right)\cdot 67 + \left(11 a + 45\right)\cdot 67^{2} + \left(42 a + 49\right)\cdot 67^{3} + 7 a\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 21 + \left(3 a + 10\right)\cdot 67 + \left(37 a + 32\right)\cdot 67^{2} + \left(42 a + 61\right)\cdot 67^{3} + \left(56 a + 28\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 45 a + 5 + \left(61 a + 62\right)\cdot 67 + \left(55 a + 17\right)\cdot 67^{2} + \left(24 a + 6\right)\cdot 67^{3} + \left(59 a + 56\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 62 a + 41 + \left(63 a + 17\right)\cdot 67 + \left(29 a + 43\right)\cdot 67^{2} + \left(24 a + 60\right)\cdot 67^{3} + \left(10 a + 11\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 13 a + 46 + \left(5 a + 48\right)\cdot 67 + 7\cdot 67^{2} + \left(8 a + 21\right)\cdot 67^{3} + \left(10 a + 2\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $14$
$21$ $2$ $(1,2)$ $6$
$105$ $2$ $(1,2)(3,4)(5,6)$ $2$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $-1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $-1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.